Home
Class 12
MATHS
Prove that: sin^(-1)((63)/(65))=sin^(-1)...

Prove that: `sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1)(63)/(16)=sin^(-1)(5)/(13)+cos^(-1)(3)/(5)

Prove that :tan^(-1)(63)/(16)=sin^(-1)(5)/(13)+cos^(-1)(3)/(5)

Prove that : tan^(-1)(63)/(16)=sin^(-1)5/(13)+cos^(-1)3/5

Prove that : tan^(-1)(63)/(16)=sin^(-1)5/(13)+cos^(-1)3/5

Prove that : tan^(-1)(63/16)=sin^(-1)\(5/13)+cos^(-1)(3/5)

Prove that tan^(-1)""(63)/(16)=sin^(-1)""(5)/(13)+cos^(-1)""(3)/(5)

Prove that sin^(-1)((4)/(5)) +sin^(-1)((5)/(13)) +sin^(-1)((16)/(65)) =(pi)/(2)

Prove that: sin^(-1)((4)/(5))+sin^(-1)((5)/(13))+sin^(-1)((16)/(65))=(pi)/(2)

Prove that: sin^(-1)((3)/(5))+cos^(-1)((12)/(13))=sin^(-1)((56)/(65))

Prove that: tan^(-1)(63/16)=sin^(-1)(5/13)+cos^(-1)(3/5)