Home
Class 12
MATHS
Prove that : (sin 2A+sin 2B + sin 2C)/(c...

Prove that : `(sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C =pi , prove that : (sin 2A + sin 2B + sin 2C)/(cos A + cos B + cos C-1)= 8 cos frac (A)(2) cos frac (B)(2) cos frac (C)(2) .

If A+B+C=180^(@)C then (sin 2A+sin 2B+sin 2C)/(cos A +cos B +cos C-1)=

If A+B+C=pi , prove that sin 2A+sin 2B-sin 2C=4 cos A cos B sin C

If A+B+C=pi , prove that sin 2A-sin 2B+sin 2C=4cos Asin B cos C.

In a triangle ABC if (sin2A+sin2B+sin2C)/(cos A+cos B+cos C-1)=((lambda)/(2))cos((A)/(2))cos((B)/(2))cos((C)/(2)) then lambda equals

If A+B+C=pi/2 prove the following (i) sin 2A+sin 2B +sin 2C=4 cos A cos B cos C (ii) cos 2A +cos 2B+cos 2C=1+4 sin A sin B sin C.

sin A + sin B + sin C = 4cos ((A) / (2)) cos ((B) / (2)) cos ((C) / (2))

If A + B + C = pi , prove that cos A + cos B + cos C= 1 + 4 sin(A/2) sin(B/2) sin(C/2)

(sin2A+sin2B+sin2C)/(cos A+cos B+cos C-1)=((lambda)/(2))(cos A)/(2)(cos B)/(2)(cos C)/(2) then lambda=