Home
Class 11
PHYSICS
The block is in equilibrium (i) T(1...

The block is in equilibrium

`(i) T_(1)=(mgcosbeta)/(sin(alpha+beta))" "(ii)T_(2)=(mgcosalpha)/(sin(alpha+beta))`
`(iii)T_(1)/T_(2)=(cosbeta)/(cosalpha)" "(iv)T_(1)/T_(2)=(cosalpha)/(cosbeta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

If sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta) =

Prove that: (cosalpha-cosbeta)^2+(sinalpha-sinbeta)^2=4sin^2((alpha-beta)/2)^(\ )

Prove that (Cosalpha-Cosbeta)^(2)+(Sinalpha-Sinbeta)^(2)=4Sin^(2)((alpha-beta)/2)

If alpha+beta=(pi)/(2) , then prove that cosalpha=sqrt((sinalpha)/(cosbeta)-sinalphacosbeta)

If cosalpha+cosbeta=0=sinalpha+sinbeta, then cos2alpha+cos2beta is equal to (a) -2"sin"(alpha+beta) (b) -2cos(alpha+beta) (c) 2"sin"(alpha+beta) (d) 2"cos"(alpha+beta)

If cosalpha+cosbeta=0=sinalpha+sinbeta, then cos2alpha+cos2beta is equal to (a) -2"sin"(alpha+beta) (b) -2cos(alpha+beta) (c) 2"sin"(alpha+beta) (d) 2"cos"(alpha+beta)

If "cot"(alpha+beta)=0, then "sin"(alpha+2beta) can be (a) -sinalpha (b) sinbeta (c) cosalpha (d) cosbeta

If "cot"(alpha+beta)=0, then "sin"(alpha+2beta) can be (a) -sinalpha (b) sinbeta (c) cosalpha (d) cosbeta

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is