Home
Class 12
MATHS
lim(x rarr2)((10-3)^(1/3)-2)/(x-2)" is e...

lim_(x rarr2)((10-3)^(1/3)-2)/(x-2)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If L=lim_(x rarr2)((10-x)^((1)/(3))-2)/(x-2), then the value of (1)/(4L)| is

lim_(x rarr2)((x+6)^((1)/(3))-2)/(2-x)=

lim_(x rarr2)(x^(3)-8)/(x^(2)-4)

lim_(x rarr2)(x^(2)-3x+2)/(x-2)

Evaluate lim_(x rarr2)(x^(3)-8)/(x-2)

lim_(x rarr oo)((x-3)/(x+2))^(x) is equal to

lim_(x rarr0)(3^(x)-2^(x))/(4^(x)-3^(x)) is equal to

lim_(x rarr2)(x^(2)-3x+2)/(x^(2)+x-6)

lim_(x rarr2^(+))((2{x}-4)/([x]-3)) is equal to,where {.} and [.] represents fractional part of x and greatest integer function

lim_(x rarr oo)(2x+1)/(3x-2)