Home
Class 11
MATHS
log4(log2 x) + log2(log4 x) = 2...

`log_4(log_2 x) + log_2(log_4 x) = 2 `

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x :satisfying the equation log_(4)(2log_(2)x)+log_(2)(2log_(4)x)=2 is

A denotes the product xyz where x,y and z satisfy log_3 x= log5-log7 and log_5 y=log7-log 3 and log_7 z=log 3-log5 B denotes the sum of square of solution of the equation, log_2(log_2 x^6 - 3) - log_2(log_2 x^4 - 5) = log_2 3 C denotes characterstio of logarithm log_2 (log_2 3)-log_2 (log_4 3)+log_2(log_4 5)-log_2(log_6 5)+log_2 (log_6 7)-log_2 (log_6 3) The valuo of A+B+C is equal to

If log_2 (log_3 (log_4 x))= 0, log_4 (log_3 (log_2 y))= 0 and log_3(log_4 (log_2z ))= 0, then the correct option is

Solve : log_2 x + log_4 (x+2) = 2

The number of values of x if log_4(2log_3(1+log_2(1+3log_3x)))=1/2

If log_2(log_3(log_4(x)))=0, log_3(log_4(log_2(y)))=0 and log_4(log_2(log_3(z)))=0 then the sum of x,y,z is

(log_x2)(log_(2x)2)=log_(4x)2 n(logx 2)(log2x 2) = log4x2 is

Solve log_4 (8)+log_4 (x+3)-log_4 (x-1)=2

The sum of solutions of the equation log_(2)x log_(4)x log_(6)x=log_(2)x*log_(4)x+log_(4)x log_(6)x+log_(6)x*log_(2)x is equal to

If log_(2)log_(3)log_(4)log_(5)A=x , then the value of A is