Home
Class 11
MATHS
For a positive integer n , fn(theta)=(ta...

For a positive integer n , `f_n(theta)=(tantheta/2)(1+sectheta)(1+sec2theta)(1+sec4theta)....(1+sec2^ntheta.)`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

For a positive integer n , let f_n(theta)=(tantheta//2)(1+sectheta)(1+sec2theta)(1+sec4theta).......... (1+sec2^ntheta) . Then (a) f_2(pi/(16))=1 (b) f_3(pi/(32))=1 (c) f_4(pi/(64))=1 (d) f_5(pi/(128))=1

For a positive integer n , let f_n(theta)=(tantheta//2)(1+sectheta)(1+sec2theta)(1+sec4theta).......... (1+sec2^ntheta) . Then (a) f_2(pi/(16))=1 (b) f_3(pi/(32))=1 (c) f_4(pi/(64))=1 (d) f_5(pi/(128))=1

For +ve integer n, let f_n(theta)=tan(theta/2)(1+sectheta)(1+sec2theta)(1+sec4theta)…..(1+sec2^ntheta) then

For a positive integer n, let : f_(n)(theta)=(tan.(theta)/(2))(1+sectheta)(1+sec2theta) (1+sec4theta)....(1+sec2^(n)theta) . Then :

For a positive integer n , let f_n(theta)=(tantheta//2)(1+sectheta)(1+sec2theta)(1+sec4theta)...................(1+sec2^ntheta). Then (a)f_2(pi/(16))=1 (b) f_3(pi/(32))=1 (c)f_4(pi/(64))=1 (d) f_5(pi/(128))=1

For a positive integer n , let f_n(theta)=(tantheta//2)(1+sectheta)(1+sec2theta)(1+sec4theta)...................(1+sec2^ntheta) . Then (a) f_2(pi/(16))=1 (b) f_3(pi/(32))=1 (c) f_4(pi/(64))=1 (d) f_5(pi/(128))=1

The value of tan(theta/2)(1+sectheta)(1+sec2theta)+(1+sec2^2theta)....(1+sec2^ntheta) is

For positive integer n if f_(n)(theta) = tan ""(theta)/(2) (1 + sec theta) (1+ sec2 theta) (1 + sec4 theta)"…."( 1 + sec2^(n)theta) then find the value of f_(2) ((pi)/(16)) " and " f_(5) ((pi)/(128)) .

sqrt(sec^2theta-1)/(sectheta)

Let f_n(Theta)=(tan(Theta/2))(1 +sec(Theta))(1+sec(2Theta)).....(1+sec(2^nTheta) .. then