Home
Class 12
MATHS
यदि y= x^(y) , तो सिद्ध कीजिए कि x (d...

यदि `y= x^(y)` , तो सिद्ध कीजिए कि ` x (dy)/(dx) = (y^(2))/(1-y log_(e) x)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y) = e^(x - y) prove that (dy)/(dx) = (log_(e)x)/((1 + log_(e)x)^(2)) .

If x^(y) = a^(x) , prove that (dy)/( dx) = ( x log _(e) a -y)/( x log_(e) x)

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If x^y = e^(x + y) , show that (dy)/(dx) = (log x - 2)/((1 - log x)^2)

If y = e^(ax) Show that x(dy)/(dx) = y log y .

A: If y = x ^(y) then (dy)/(dx) = (y ^(2))/(x(1- log y )) If y = f (x) ^(y), then (dy)/(dx) = (y ^(2) f '(x))/(f (x) [1- ylog f (x)])= (y ^(2) f'(x))/(f (x) [1- log y])

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If x ^(y) = e ^( x -y) , then show that (dy)/(dx) = (log x )/( (1 + log x ) ^(2))