Home
Class 12
MATHS
Let a1 and a2 be two values of a for whi...

Let `a_1` and `a_2` be two values of `a` for which `f(x)= x*{ln(1+x)+ln(1-x)}/(secx-cosx) , x in (-1,0)` and `f(x)=(a^2-3a+1)x+x^2 , x in (0,oo)` is differentiable at `x=0`, then the value of `(a_1)^2+(a_2)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=((3^(x)-1)^(2))/(sin x*ln(1+x)),x!=0, is continuous at x=0, Then the value of f(0) is

If cosx=a_0+a_1 x+a_2x^2+... then the value of a_2 is

lim_(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)=

lim_(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

lim_(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

Let f(x)=(log (1+x+x^2)+log(1-x+x^2))/(sec x-cosx) , x ne 0 .Then the value of f(0) so that f is continuous at x=0 is

if f(x) = (x - a_1) (x - a_2) .....(x - a_n) then find the value of lim_(x to a_1) f(x)

Let (1 + x^2)^2 (1 + x)^n = A_0 +A_1 x+A_2 x^2 + ...... If A_0, A_1, A_2, are in A.P. then the value of n is