Home
Class 12
MATHS
If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf...

If `f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(primeprime)(x)+f(x)` is equal to (a)`-cosx` (b) `-sinx` (c)`int_0^x(x-t)f(t)dt` (d) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to a) -cosx (b) -sinx c) int_0^x(x-t)f(t)dt (d) 0

If f(x)=int_0^x (sint)/(t)dt,xgt0, then

If f(x)=cos x-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

If f(x)=cos x-int_(0)^(x)(x-t)f(t)dt, thenf '(x)+f(x) is equal to (a)-cos x(b)-sin x(c)int_(0)^(x)(x-t)f(t)dt (d) 0

If f(x)=cosx-int_(0)^(x)(x-t)f(t)dt , then f''(x)+f(x) is equal to a) -cosx b) -sinx c) int_(0)^(x)(x-t)f(t)dt d)0

If f(x)=int_0^x(sint)/t dt ,x >0, then

If f(x)=int_0^x(sint)/t dt ,x >0, then

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then the value of (23)/(2)f(0) is equal to

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt , then the value of (23)/(3)f(0) is equal to-