Home
Class 12
MATHS
Q. Let f(x)=lim(x->0)(((sin(x+h))^ln(x+h...

Q. Let `f(x)=lim_(x->0)(((sin(x+h))^ln(x+h)-(sin x)^ lnx)/h)` then the value of `f(pi/2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(lim)_(h->0)(("sin"(x+h))^(1n(x+h))-(sinx)^(1nx))/hdot Then f(pi/2) equal to (a)0 (b) equal to 1 (c)In pi/2 (d) non-existent

Let f(x)=(lim)_(h->0)(("sin"(x+h))^(1n(x+h))-(sinx)^(1nx))/hdot Then f(pi/2) equal to (a)0 (b) equal to 1 (c)In pi/2 (d) non-existent

Let f(x)=(lim)_(h->0)(("sin"(x+h))^(1n(x+h))-(sinx)^(1nx))/hdot Then f(pi/2) equal to (a)0 (b) equal to 1 (c)In pi/2 (d) non-existent

"If "f(x)=lim_(hrarr0) ((sin(x+h))^(log_(e)(x+h))-(sin x)^(log_(e)x))/(h)" then find "f(pi//2).

"If "f(x)=lim_(hrarr0) ((sin(x+h))^(log_(e)(x+h))-(sin x)^(log_(e)x))/(h)" then find "f(pi//2).

"If "f(x)=lim_(hrarr0) ((sin(x+h))^(log_(e)(x+h))-(sin x)^(log_(e)x))/(h)" then find "f(pi//2).

Let f(x)=lT_(h rarr0)(sin(x+h)^(In(x+h))-(sin x)^(In x))/(h) then f((pi)/(2)) is

f(x)=(lim)_(h rarr0)((sin(x+h))^(1n(x+h))-(sin x)^(1nx))/(h) Then f((pi)/(2)) equal to (a)0(b) equal to 1(c)In(pi)/(2) (d) non-existent

lim_(h rarr0)(sin(x+h)-sinx)/(h)

lim_(h rarr0)(sin(x+h)-sin x)/(h)