Home
Class 12
MATHS
Let f(x) and g(x) be real valued functio...

Let f(x) and g(x) be real valued functions such that f(x)g(x)=1, `AA x in R."If "f''(x) and g''(x)" exists"AA x in R and f'(x) and g'(x)`
are never zero, then prove that `(f''(x))/(f'(x))-(g''(x))/(g'(x))=(2f'(x))/(f(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g'(x)>0 and f'(x)<0AA x in R, then

Let f(x) and g(x) be two function having finite nonzero third-order derivatives f''(x) and g''(x) for all x in R. If f(x)g(x)=1 for all x in R, then prove that (f''')/(f')-(g'')/(g')=3((f'')/(f)-(g'')/(g))

Let f(x)a n dg(x) be two function having finite nonzero third-order derivatives f'''(x) and g'''(x) for all x in R . If f(x).g(x)=1 for all x in R , then prove that (f''')/(f') - (g''')/(g') = 3((f'')/f - (g'')/g) .

Let f(x)a n dg(x) be two function having finite nonzero third-order derivatives f'''(x) and g'''(x) for all x in R . If f(x).g(x)=1 for all x in R , then prove that (f''')/(f') - (g''')/(g') = 3((f'')/f - (g'')/g) .

Let f(x)=x^(2) and g(x)=2x+1 be two real functions. Find (f+g) (x), (f-g) (x), (fg) (x), (f/g) (x) .

Let f(x)=x^(2) and g(x)=2x+1 be two real functions. Find (f+g) (x), (f-g) (x), (fg) (x), (f/g) (x) .

Let f(x)=x^(2) and g(x)=2x+1 be two real functions. Find (f+g) (x), (f-g) (x), (fg) (x), (f/g) (x) .

Let f(x)=x^(2) and g(x)=2x+1 be two real functions. Find (f+g) (x), (f-g) (x), (fg) (x), (f/g) (x) .

f(x) and g(x) are two real valued function.If f'(x)=g(x) and g'(x)=f(x)AA x in R and f(3)=5,f'(3)=4 .Then the value of (f^2(pi)-g^(2)(pi)) is equal to