Home
Class 12
MATHS
" (ii) If "x=tan((1)/(a)log y)" ,then pr...

" (ii) If "x=tan((1)/(a)log y)" ,then prove that "(1+x^(2))(d^(2)y)/(dx^(2))+(2x-a)(dy)/(dx)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

x=tan((1)/(2)" log y") , then show that (1+x^(2))(d^(2)y)/(dx^(2))+(2x-2)(dy)/(dx)=0

If x=tan((1)/(a)log y), show that (1-x^(2))(d^(2)y)/(dx^(2))+(2x-a)(dy)/(dx)=0

If x=tan((1)/(a)log y), show that (1+x^(2))(d^(2)y)/(dx^(2))+(2x-a)(dy)/(dx)=0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))(2x)(dy)/(dx)=0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If y=sin^(-1)x then prove that (1-x^(2))(d^(y))/(dx^(2))-x(dy)/(dx)=0

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If x=tan(1/a log y) , prove that (1+x^2) (d^2y)/(dx^2)+(2x-a) (dy)/(dx)=0