Home
Class 12
MATHS
int(e)^(e^(2))[(1)/(log x)-(1)/((log x)^...

int_(e)^(e^(2))[(1)/(log x)-(1)/((log x)^(2))]dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(e)^(e^(2)) (1/logx-1/((logx)^(2)))dx=

int_(e )^(e^(2))log x dx =

int_(e)^(e^(2))(log xdx)/((1+log x)^(2))=(e)/(6)(2e-3)

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

int_(e)^(e^(2))(logxdx)/((1+logx)^(2))=(e)/(6)(2e-3)

Show that (a) int_(e)^(e^(2))(1)/(log x)dx = int_(1)^(2)(e^(x))/(x)dx (b) int_(t)^(1)(dx)/(1+x^(2)) = int_(1)^(1//t)(dx)/(1+x^(2))

Evaluate : int_e^(e^2){1/(logx)-1/((logx)^2)}dx

Evaluate : int_e^(e^2){1/(logx)-1/((logx)^2)}dx

Evaluate int_(e)^(e^(2))(1)/(x)dx

If I_(1)=int_(e)^(e^(2))(dx)/(logx)andI_(2)=int_(1)^(2)(e^(x))/(x)dx, then