Home
Class 10
MATHS
" If "cot theta=(15)/(8)" evaluate "((2+...

" If "cot theta=(15)/(8)" evaluate "((2+2sin theta)(1-sin^(2)alpha)^(2))/((1+cos theta)(2-cos^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If cot theta=(15)/(8), then Evaluate ((2+2sin theta)(1-sin theta))/((1+cos theta)(2-2cos theta))

If cot theta = (7) /(8) evaluate (i) (( 1 + sin theta ) (1 - sin ) theta ) /((1 + cos theta ) ( 1 - cos ) theta ) (ii) cot ^ 2 theta

Given cot theta =(7)/(8) , then evaluate (i) ((1+sin theta )( 1-sin theta ))/( (1+cos theta )(1-cos theta )) " "(ii) cot^2 theta

(sin^(8)theta-cos^(8)theta)/(cos2theta(1+cos^(2)2theta))=?

If cot theta=(1)/(sqrt(3)), find the value of (1-cos^(2)theta)/(2-sin^(2)theta)

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If costhetagtsinthetagt0 , then evaluate: int{log((1+sin2theta)/(1-sin2theta))^(cos2theta)+log((cos2theta)/(1+sin2theta))}d theta

(1)/(1-cos theta)-(1)/(1+cos theta)=(2cos theta)/(sin^(2)theta)=2cot theta xx csc