Home
Class 10
MATHS
यदि p(x) = x^(3) - 3x^(2) + 3x -5 एवं q(...

यदि `p(x) = x^(3) - 3x^(2) + 3x -5` एवं `q(x) = x - 1` तो p(x) को q(x) से भाग दे तथा भागफल एवं शेषफल ज्ञात करे। क्या p(x) का एक गुणनखंड q(x) है?

Promotional Banner

Similar Questions

Explore conceptually related problems

Let P(x) = 4x^(2) - 3x + 2x^(3) + 5 and q(x) = x^(2) + 2x + 4 find p ( x) - q(x) .

The sum of the polynomials p(x) = x^(3) - x^(2) - 2, q(x) = x^(2) - 3x + 1

The sum of the polynomials p(x) =x^(3) -x^(2) -2, q(x) =x^(2) -3x+ 1

p(x)=2x^2-5x+1 , q(x) = x^2+3x+2 ആയാല്‍ r(x) = p(x)+q(x) കാണുക

If p(x)=x^2-3x+2x^3+5 and q(x)=x^2+2x+4, the find p(x)+q(x).

If p(x) = x^3+3 and q(x)= x-3 then find the value of p(x).q(x)

Let P(x) = x^(7) - 3x^(5) +x^(3) - 7x^(2) +5 and q(x) = x- 2 . The remainder if p(x) is divided by q(x) is

Let P(x) = x^(7) - 3x^(5) +x^(3) - 7x^(2) +5 and q(x) = x- 2 . The remainder if p(x) is divided by q(x) is