Home
Class 11
MATHS
Consider an ellipse (x^2)/4+y^2=alpha(al...

Consider an ellipse `(x^2)/4+y^2=alpha(alpha` is parameter `>0)` and a parabola `y^2=8x` . If a common tangent to the ellipse and the parabola meets the coordinate axes at `Aa n dB` , respectively, then find the locus of the midpoint of `A Bdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

The tangent at any point P on the circle x^2+y^2=4 meets the coordinate axes at Aa n dB . Then find the locus of the midpoint of A Bdot

tangent drawn to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 at point 'P' meets the coordinate axes at points A and B respectively.Locus of mid-point of segment AB is

Equation of a common tangent to the circle x^(2)+y^(2)-6x=0 and the parabola y^(2)=4x is

If the tangent at the point P(2,4) to the parabola y^(2)=8x meets the parabola y^(2)=8x+5 at Q and R, then find the midpoint of chord QR.

The tangent at the point P(x_(1),y_(1)) to the parabola y^(2)=4ax meets the parabola y^(2)=4a(x+b) at Q and R .the coordinates of the mid-point of QR are

A tangent to the parabola y^(2)=4ax meets axes at A and B .Then the locus of mid-point of line AB is

A variable tangent to the parabola y^(2)=4ax meets the parabola y^(2)=-4ax P and Q. The locus of the mid-point of PQ, is

The equations of the commom tangents of the ellipse x^(2)+4y^(2)=8 & the parabola y^(2)=4x are