Home
Class 10
MATHS
" If "2x=sec A" and "(2)/(x)=tan A," pro...

" If "2x=sec A" and "(2)/(x)=tan A," prove that "(x^(2)-(1)/(x^(2)))=(1)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

If 4x = sec theta and (4)/(x) = tan theta then 8 (x^(2) - (1)/(x^(2))) is

If x=a sec theta,y=b tan theta, then prove that (x^(2))/(a^(2))-(y^(2))/(b^(2))=1

tan theta+sec theta=x show that 2tan theta=x-(1)/(x),2sec theta=x+(1)/(x) hence prove that sin theta=(x^(2)-1)/(x^(2)+1)

If sec theta+tan theta = x , prove that sin theta= (x^2-1)/(x^2+1)

If x = a sec O/ and y = b tan O/ then prove that x^2/a^2 - y^2/b^2 = 1

If 4x = sec theta and 4/x = tan theta , then 8(x^2 -1/x^2) is

if sec A=x+(1)/(4x) then prove that sec A+tan A=2x,(1)/(2x)

If sec?+tan?=x, prove that sin?=x2-1

If sec A = x + 1/(4x) , prove that sec A + tan A = 2x or (1)/(2x)