Home
Class 12
MATHS
(1)/(sqrt((2-x)^(2)+1))...

(1)/(sqrt((2-x)^(2)+1))

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)[cos^(-1)(x sqrt(x)-sqrt((1-x)(1-x^(2))))]=(1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(-1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))0 b.1/4c.-1/4d none of these

"int((1)/(sqrt(1-x^(2)))+(2)/(sqrt(1+x^(2))))dx,|x|<1

int((1)/(sqrt(1-x^(2)))+(2)/(sqrt(1+x^(2))))dx on (-1,1)

The expression (sqrt(2x^(2)+1)+sqrt(2x^(2)-1))^(6)+((2)/((sqrt(2x^(2)+1)+sqrt(2x^(2)-1))^(square)))^(6) is polynomial of degree 6 b.8 c.10 d.12

The range of f(x)=cos^(-1)((sqrt(2x^(2)+1))/(x^(2)+1)) is

cos^(-1)x= 2 sin ^(-1) sqrt((1-x)/(2))=2 cos ^(-1)""sqrt((1+x)/(2))=2tan^(-1)""(sqrt(1-x^(2)))/(1+x)

cos^(-1)sqrt((sqrt(1+x^(2))+1)/(2sqrt(1+x^(2))))

Differentiate each of the following functions with respect to x:( i) sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these