Home
Class 12
MATHS
int(0)^(1)x^(5)(1-x)^((5)/(2))dx...

int_(0)^(1)x^(5)(1-x)^((5)/(2))dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)x^(2)(1-x)^(5)dx=

int_(0)^(1)x^(4)(1-x)^(5//2)dx=

Evaluate: int_(0)^(1)x^(5)(1-x^(2))^(5) dx.

Evaluate :int_(0)^(1)x(1-x)^(5)dx

If m gt 0, n gt 0 , the definite integral l=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx depends upon the vlaues of m and n and is denoted by beta(m,n) , called the beta function. E.g. int_(0)^(1)x^(4)(1-x)^(5)dx=int_(0)^(1)x^(5-1)(1-x)^(6-1)dx=beta(5, 6) and int_(0)^(1)x^(5//2)(1-x)^(-1//2)dx=int_(0)^(1)x^(7//2-1)(1-x)^(1//2-1)dx=beta((7)/(2),(1)/(2)) . Obviously, beta(n, m)=beta(m, n) . If int_(0)^(n)(1-(x)/(n))^(n)x^(k-1)dx=R beta(k, n+1) , then R is equal to

If m gt 0, n gt 0 , the definite integral l=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx depends upon the vlaues of m and n and is denoted by beta(m,n) , called the beta function. E.g. int_(0)^(1)x^(4)(1-x)^(5)dx=int_(0)^(1)x^(5-1)(1-x)^(6-1)dx=beta(5, 6) and int_(0)^(1)x^(5//2)(1-x)^(-1//2)dx=int_(0)^(1)x^(7//2-1)(1-x)^(1//2-1)dx=beta((7)/(2),(1)/(2)) . Obviously, beta(n, m)=beta(m, n) . The integral int_(0)^(pi//2)cos^(2m)theta sin^(2n) theta d theta is equal to

int_(0)^(1)(x)/((1-x)^(5//4))dx=

int_(0)^(1)(x^(5))/(1+x^(12))backslash dx

int_(0)^(1)(x^(4))/(sqrt(1-x^(5)))dx