Home
Class 11
MATHS
The line l x+m y+n=0 is a normal to t...

The line `l x+m y+n=0` is a normal to the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` . then prove that `(a^2)/(l^2)+(b^2)/(m^2)=((a^2-b^2)^2)/(n^2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The line lx+my=n is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, if

The line y=mx+c is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, if c

If the line lx+my=1 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then (a^(2))/(l^(2))+(b^(2))/(m^(2))=

If straight line lx+my+n=0 is a tangent of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, then prove that a^(2)l^(2)+b^(2)m^(2)=n^(2)

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

The line lx + my + n = 0 is a normal to (x^(2))/(a^(2)) + (y^(2))/(b^(2)) =1 , provided

The line lx+my+n=0 will be a normal to the hyperbola b^(2)x^(2)-a^(2)y^(2)=a^(2)b^(2) if

If the line lx+my+n=0 touches the circle x^(2)+y^(2)=a^(2), then prove that (l^(2)+m^(2))^(2)=n^(2)