Home
Class 11
MATHS
coses A+sec A=cosec B+sec B," prove that...

coses A+sec A=cosec B+sec B," prove that: "tan^(2)A tan B=cot(A+B)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If csc A+sec A=csc B+sec B, prove that: tan A tan B=cot(A+B)/(2)

Ifcos ecA+sec A=cos ecB+sec B, prove that tan A tan B=(cot(A+B))/(2)

If cosec A + sec A = cosec B + sec B , prove that tan A tan B = cot( A+ B)/ 2

If cosec A + sec A = cosec B + sec B then prove that tan A tan B = cot "" (A + B)/(2) .

If sec A - "cosec" A= "cosec" B - secB, "show that" tanA tan B = "tan"(A+B)/2

If "cosec"A + secA = "cosec"B + sec B prove that "tan"(A+B)/2 = cot A cot B

If "cosec" 2A+ "cosec"2B+"cosec"2C=0 , prove that tan A+ tan B+ tan C+ cot A+ cot B+cot C=0

(b) prove that tan^(2)A+cot^(2)A+2=sec^(2)A*cosec^(2)A

(sec A sec B+tan A tan B)^(2)-(sec A tan B+tan A sec B)^(2)=1

(sec A sec B+tan A tan B)^(2)-(sec A tan B+tan A sec B)^(2)=1