Home
Class 11
MATHS
यदि f(x) = cos(log x), तो f(x^(2))f(y^(...

यदि f(x) = cos(log x), तो `f(x^(2))f(y^(2)) - (1)/(2)[f((x^(2))/(y^(2))) + f(x^(2)y^(2))]` का मान है-

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = cos(log x) , then f(x^(2)) . f(y^(2)) -1/2[f(x^(2)y^(2)) +f(x^(2)/y^(2))]=

If f(x)=cos(log x), then f(x^(2))f(y^(2))-(1)/(2)[f((x^(2))/(y^(2)))+f(x^(2)y^(2))] has the value

If f(x)=cos(logx) , then f(x^(2))f(y^(2))-(1)/(2)[f(x^(2)y^(2))+f((x^(2))/(y^(2)))]=

If f(x)=cos(logx) , then f(x^2)f(y^2)-(1)/(2)[f((x^2)/(y^2))+f(x^(2)y^(2))] has the value :

If f(x)=cos(log x) then f(x^(2))f(y^(2))-(1)/(2)[f((x^(2))/(2))+f((x^(2))/(y^(2)))] has the value has

If f(x) = cos(log x) , then f((1)/(x)) f((1)/(y) - (1)/(2)[f((x)/(y)) + f(xy)] =

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=