Home
Class 12
MATHS
If f(x)=cos(logx), then show that f((1)/...

If `f(x)=cos(logx)`, then show that `f((1)/(x)).f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos(logx) , then prove that f((1)/(x)).f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]=0

If f(x) = cos(log x) , then f((1)/(x)) f((1)/(y) - (1)/(2)[f((x)/(y)) + f(xy)] =

If f(x) = cos(log_ex) then show that f(x).f(y)-1/2[f(xy) + f(x/y)]=0

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(logx) , then : f(x).f(y)-(1)/(2)(f((x)/(y))+f(xy)) has the value :

If f(x)=cos(log x), " then " f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)] has the value

If f(x)=cos(logx) , then f(x^(2))f(y^(2))-(1)/(2)[f(x^(2)y^(2))+f((x^(2))/(y^(2)))]=