Home
Class 11
MATHS
If F1 and F2 are the feet of the per...

If `F_1` and `F_2` are the feet of the perpendiculars from the foci `S_1a n dS_2` of the ellipse `(x^2)/(25)+(y^2)/(16)=1` on the tangent at any point `P` on the ellipse, then prove that `S_1F_1+S_2F_2geq8.`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If M_(1) and M_(2) are the feet of perpendiculars from foci F_(1) and F_(2) of the ellipse (x^(2))/(64)+(y^(2))/(25)=1 on the tangent at any point P of the ellipse then

If F_(1) and F_(2) are the feet of the perpendiculars from foci S_(1) and S_(2) of the ellipse (x^(2 /(25 +y^(2 /(16 =1 on the tangent at any point P of the ellipse,then the minimum value of S_(1 F_(1 +S_(2 F_(2 is 1) 2, 2) 3, 3) 6, 4) 8

The product of the perpendiculars from the two foci of the ellipse (x^(2))/(9)+(y^(2))/(25)=1 on the tangent at any point on the ellipse

If p is the length of the perpendicular from the focus S of the ellipse x^(2)/a^(2)+y^(2)/b^(2) = 1 to a tangent at a point P on the ellipse, then (2a)/(SP)-1=

If F_(1) and F_(2) are the feet of the perpendiculars from foci s_(1) and s_(2) of an ellipse 3x^(2)+5y^(2)=15 on the tangent at any point P on the ellipse then (s_(1)F_(1))(S_(2)F_(2)) =

Let d_1a n dd_2 be the length of the perpendiculars drawn from the foci Sa n dS ' of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 to the tangent at any point P on the ellipse. Then, S P : S^(prime)P= d_1: d_2 (b) d_2: d_1 d1 2:d2 2 (d) sqrt(d_1):sqrt(d_2)

Let d_(1) and d_(2) be the lengths of perpendiculars drawn from foci S' and S of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 to the tangent at any point P to the ellipse. Then S'P : SP is equal to

The locus of the foot of the perpendicular from the foci an any tangent to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is