Home
Class 12
MATHS
g(x) is the inverse of function f(x), fi...

g(x) is the inverse of function f(x), find `(d^2f)/dx^2(1), g(x)=x^3+e^(x/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

g(x) is inverse function of f(x). find f'(x) or f'(1) if g(x)=x^(^^)3+e^(^^)(x/2)

g(x) is a inverse function of f(x) find f'(x)?y=x^(3)+e^((x)/(2))

Let g(x) be the inverse of the function f(x) ,and f'(x) 1/(1+ x^(3)) then g(x) equals

Let g(x) be the inverse of the function f(x) and f'(x)=(1)/(1+x^(3)) then g'(x) equals

Let g(x) be the inverse of the function f(x), and f'(x)=1/(1+x^3) then g'(x) equals

If e^f(x)= log x and g(x) is the inverse function of f(x), then g'(x) is

If e^f(x)= log x and g(x) is the inverse function of f(x), then g'(x) is

If g (x) is the inverse of f (x) and f(x)=(1)/(1+x^(3)) , then find g(x) .

Let e^(f(x))=ln x. If g(x) is the inverse function of f(x), then g'(x) equal to: e^(x)(b)e^(x)+xe^(x+e^(2))(d)