Home
Class 12
MATHS
e^xlogy=sin^(-1)x+sin^(-1)y...

`e^xlogy=sin^(-1)x+sin^(-1)y`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: e^(x)logy=sin^(-1)x+sin^(-1)y

Find dy/dx where e^x logy = sin^(-1)x + sin^(-1)y

Find dy/dx where e^x log y = sin^-1 x + sin^-1y

If f(x) = frac{sin^(-1)x}{sqrt (1-x^2)} , g(x)=e^(sin^(-1)x) , then int f(x)g(x) dx =........................ A) e^(sin^(-1)x) (sin^(-1)x-1) + c B) e^( sin^(-1)x) (1- sin^(-1)x) + c C) e^(sin^(-1)x) (sin^(-1)x+1) + c D) -e^(sin^(-1)x) (sin^(-1)x-1) + c

If x -y = Sin ^(-1) x - Sin ^(-1) y then (dy)/(dx) =

Formula for sin^(-1)(x)+-sin^(-1)(y)

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , then find sin^(-1) x + sin^(-1) y + sin^(-1) z

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^(2), then

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then