Home
Class 12
MATHS
g(x) is a inverse function of f. g(x)=x^...

`g(x)` is a inverse function of f. `g(x)=x^3+e^(x/2)` then find the value of `f''(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

g(x) is a inverse function of f(x) find f'(x)?y=x^(3)+e^((x)/(2))

If f(x)=x^(3)+3x+1 and g(x) is the inverse function of f(x), then the value of g'(5) is equal to

If f(x)=x^(3)+3x+1 and g(x) is the inverse function of f(x), then the value of g'(5) is equal to

If g is inverse of f(x)=x^(3)+x+cos x, then find the value of g'(1)

Consider a function f(x)=x^(x), AA x in [1, oo) . If g(x) is the inverse function of f(x) , then the value of g'(4) is equal to

Consider a function f(x)=x^(x), AA x in [1, oo) . If g(x) is the inverse function of f(x) , then the value of g'(4) is equal to

Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x) is the inverse function of f(x) , then the value of g'((pi)/(4)) is equal to

Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x) is the inverse function of f(x) , then the value of g'((pi)/(4)) is equal to

If the function f(x) = x^3 + e^(x/2) and g(x) =f^-1(x) , then the value of g'(1) is