Home
Class 12
MATHS
g(x) is inverse function of f(x). find f...

g(x) is inverse function of f(x). find f''(x) or f''(1) if g(x) = x^3 + e^(x/2)

Promotional Banner

Similar Questions

Explore conceptually related problems

g(x) is a inverse function of f(x) find f'(x)?y=x^(3)+e^((x)/(2))

If g is the inverse function of f and f'(x) = sin x then g'(x) =

g(x) is the inverse of function f(x), find (d^(2)f)/(dx^(2))(1),g(x)=x^(3)+e^((x)/(2))

If g(x) is the inverse function of f(x) and f'(x)=(1)/(1+x^(4)) , then g'(x) is

If g(x) is the inverse function of f(x) and f'(x)=(1)/(1+x^(4)) , then g'(x) is

If g is inverse of function f and f'(x)=sinx , then g'(x) =

Let e^(f(x))=ln x. If g(x) is the inverse function of f(x), then g'(x) equal to: e^(x)(b)e^(x)+xe^(x+e^(2))(d)

Let g(x) be the inverse of the function f(x) ,and f'(x) 1/(1+ x^(3)) then g(x) equals

Let g(x) be the inverse of the function f(x) and f'(x)=(1)/(1+x^(3)) then g'(x) equals