Home
Class 11
MATHS
Tangents are drawn to the ellipse (x^2)/...

Tangents are drawn to the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1,(a > b),` and the circle `x^2+y^2=a^2` at the points where a common ordinate cuts them (on the same side of the x-axis). Then the greatest acute angle between these tangents is given by (A) `tan^(-1)((a-b)/(2sqrt(a b)))` (B) `tan^(-1)((a+b)/(2sqrt(a b)))` (C) `tan^(-1)((2a b)/(sqrt(a-b)))` (D) `tan^(-1)((2a b)/(sqrt(a+b)))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

a((sqrt(a)+sqrt(b))/(2b sqrt(a)))^(-1)+b((sqrt(a)+sqrt(b))/(2a sqrt(b)))^(-1)

int(1)/(a^(2)-b^(2)cos^(2)x)dx(a>b)=(1)/(a sqrt(a^(2)-b^(2)))tan^(-1)[(a tan x)/(sqrt(a^(2)-b^(2)))]+c

If 3tan^(-1)((1)/(2+sqrt(3)))-(tan^(-1)1)/(x)=(tan^(-1)1)/(3) then x is equal to 1(b)2(c)3(d)sqrt(2)

y = tan ^ (- 1) [sqrt ((ab) / (a + b)) (tan x) / (2)]

If y=sqrt((a-x)(x-b))-(a-b)tan^(-1)((sqrt(a-x))/(sqrt(x-b))) then (dy)/(dx)=

Prove that: tan[(pi)/(4)+(1)/(2) tan^(-1)((a)/(b))]+tan[(pi)/(4)-(1)/(2)tan^(-1)((a)/(b))]=(2sqrt(a^(2)+b^(2)))/(b)

If chord of contact of the tangent drawn from the point (a,b) to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 touches the circle x^(2)+y^(2)=k^(2), then find the locus of the point (a,b).

f(x)=((1)/(sqrt(b-a)))(((sqrt((b-a)/(a)))sin2x)/(sqrt(1+(((sqrt(b-a))/(a)))sin x)))(sqrt(a+b tan^(2)x) at x=3(pi)/(4)(sqrt(a+b tan^(2)x)

f(x)=((1)/(sqrt(b-a)))(((sqrt((b-a)/(a)))sin2x)/(sqrt(1+(((sqrt(b-a))/(a)))sin x)))(sqrt(a+b tan^(2)x) at x=3(pi)/(4)(sqrt(a+b tan^(2)x)