Home
Class 12
MATHS
(x^(2)d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(3...

`(x^(2)d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(3)` Find Degree.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the order and degree of the differential equation : x^(2)(d^(2)y)/(dx^(2))=[1+((dy)/(dx))^(2)]^(4) .

" 2"(d^3y)/(dx^(3))+(d^2y)/(dx^(2))-(dy)/(dx)-y=0 find degree and order.

(d^(3)y)/(dx^(3))+x((d^(2)y)/(dx^(2)))^(3)+y((dy)/(dx))^(4)=0 . Find order and degree of differential equation.

((d^(2)y)/(dx^(2)))^(3)+((dy)/(dx))^(4)=x^(5) . Find order and degree.

(d^(2)y)/(dx^(2))+(1)/(((dy)/(dx))^(2))=y . Find order and degree of differential equation.

(d^(2)y)/(dx^(2))=[1+(dy)/(dx)]^(3//2) . Find order and degree of differential equation.

(d^(4)y)/(dx^(4))=[1+((dy)/(dx))^(2)]^(3//2) . Find order and degree of differential equation.

Find the order and degree, if defined, of the following differential equation : x^(2)(d^(2)y)/(dx^(2))=[1+((dy)/(dx))^(2)]^(4)

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

The degree of the differential equation : x^(2)((d^(2)y)/(dx^(2)))^(3)+y((dy)/(dx))^(4)+x^(3)=0 is ___________.