Home
Class 12
MATHS
Prove that, tan^(-1)a+tan^(-1)b+tan^(-1)...

Prove that, `tan^(-1)a+tan^(-1)b+tan^(-1)((1-a-b-ab)/(1+a+b-ab))=(pi)/(4)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((a)/(b))-tan((a-b)/(a+b))=(pi)/(4)

tan^(-1)a+tan^(-1)b=(pi)/(2)

Prove that, "tan"^(-1)(a)/(b)-"tan"^(-1)((a-b)/(a+b))=(pi)/(4) .

tan ^(-1)"" a+ cot ^(-1)""b=cot ^(-1) ""(b-a)/(1+ab)

Prove that : tan^(-1) a - tan^(-1) b = cos ^(-1) [(1+ab)/(sqrt((1+a^(2))(1+b^(2))))]

Prove that : tan^(-1) a - tan^(-1) b = cos ^(-1) [(1+ab)/(sqrt((1+a^(2))(1+b^(2))))]

tan ^ (- 1) ((a) / (b)) - tan ^ (- 1) ((ab) / (a + b)) = (pi) / (4)

Prove that tan^(-1)((a-b)/(1+ab))+ tan^(-1)((b-c)/(1+bc))+tan^(-1)((c-a)/(1+ca))=0 , ab>(-1), bc>(-1), ca>(-1)

Prove that tan ^(-1) ((a-b)/(1+a b))+tan ^(-1)(( b-c)/(1+b c))+tan ^(-1) ((c-a)/(1+c a))=0

Prove that "tan"^(-1)(ap-q)/(aq+p)+"tan"^(-1)(b-a)/(ab+1)+"tan"^(-1)(c-b)/(bc+1)="tan"^(-1)(p)/(q)-"tan"^(-1)(1)/(c )