Home
Class 11
MATHS
The normal at a point P on the ellipse ...

The normal at a point `P` on the ellipse `x^2+4y^2=16` meets the x-axis at `Qdot` If `M` is the midpoint of the line segment `P Q ,` then the locus of `M` intersects the latus rectums of the given ellipse at points. (a)`(+-((3sqrt(5)))/2+-2/7)` (b) `(+-((3sqrt(5)))/2+-(sqrt(19))/7)` (c)`(+-2sqrt(3),+-1/7)` (d) `(+-2sqrt(3)+-(4sqrt(3))/7)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(2sqrt(7))/(sqrt(5)-sqrt(3))

(sqrt(3)-sqrt(5))(sqrt(3)+sqrt(5))/(sqrt(7)-2sqrt(5))

(5+2sqrt(3))/(7+4sqrt(3))=a-b sqrt(3)

(5+2sqrt(3))/(7+4sqrt(3))=a-b sqrt(3)

Simplify: (7+3sqrt(5))/(3+sqrt(5))-(7-3sqrt(5))/(3-sqrt(5)) (ii) (1)/(2+sqrt(3))+(2)/(sqrt(5)-sqrt(3))+(1)/(2-sqrt(5))

tan^(2)((1)/(2)sin^(-1)(2)/(3))= (A) (7+3sqrt(3))/(2) (B) (7-5sqrt(3))/(2) (C) (7-3sqrt(5))/(2) (D) (7+5sqrt(3))/(2)

sqrt(2)+sqrt(3)+sqrt(7)-(1)/(sqrt(2)+sqrt(3)+sqrt(7))=?

The eccentricity of the ellipse 4x^(2)+9y^(2)=36 is (1)/(2sqrt(3)) b.(1)/(sqrt(3)) c.(sqrt(5))/(3) d.(sqrt(5))/(6)

Simplify each of the following by rationalising the denominator: (7+3sqrt(5))/(7-3sqrt(5)) (ii) (2sqrt(3)-sqrt(5))/(2sqrt(2)+3sqrt(3))