Home
Class 12
MATHS
A real value of x satisfies the equation...

A real value of x satisfies the equation `(3-4ix)/(3+4ix)=alpha-ibeta(alpha,beta in R)`, if `alpha^2+beta^2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

A real value of x satisfies the equation (3-4ix)/(3+4ix)=alpha-i beta(alpha,beta in R), if alpha^(2)+beta^(2)=

A real value of of x satisfies the equation (3-4ix)/(3+4ix)= alpha-ibeta(alpha,beta in R) if alpha^(2)+beta^(2)) =

A real value of x satsifies the equation ((3-4ix)/(3+4ix)) =alpha- ibeta(alpha, beta in R) , if alpha^(2)+beta^(2) is equal to

A real value of x satisfies the equation (3-4 i x)/(3+4 i x)=alpha-i beta (alpha, beta in R) , if alpha^(2)+beta^(2)=

A real value of x will satisfy the equation (3- i4x)/(3+i4x)= alpha -I beta (alpha, beta real) if-

A real value of x-satisfies the equation (frac{3-4ix}{3+4ix}) = alpha - i beta , if ( alpha , beta in R) if alpha^2 + beta^2 =

Let alpha satisfy the equation x ^(3) +3x ^(2) +4x+5=0 and beta satisfy the equatin x ^(3) -3x ^(2)+4x-5=0,alpha, beta in R, then alpha + beta =

Let alpha satisfy the equation x ^(3) +3x ^(2) +4x+5=0 and beta satisfy the equatin x ^(3) -3x ^(2)+4x-5=0,alpha, beta in R, then alpha + beta =

Roots of the equation 3x^2 -6x+4=0 are alpha and beta then find the value of alpha^2 beta + alpha beta^2

If alpha and beta are are the real roots of the equation x^(3)-px-4=0,p in R such that 2alpha+beta=0 then the value of (2alpha^(3)+beta^(3)) equals