Home
Class 12
MATHS
If x sin(a+y)+sina.cos(a+y)=0, then pro...

If `x sin(a+y)+sina.cos(a+y)=0`, then prove that
`(dy)/(dx) = (sin^(2)(a+y))/(sina)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sin (a+y) + sin a cos (a+y) = 0, then prove that : dy/dx = (sin^2(a+y))/(sina)

If x sin (a + y) + sin a cos (a + y)= 0 , then prove that (dy)/(dx)= (sin^(2) (a + y))/(sin a)

If sin y = x sin (a + y), then prove that (dy)/(dx) = (sin^(2) (a + y))/(sin a) .

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If xsin(a+y)+sinacos(a+y)=0 , prove that (dy)/(dx)=(s in^2(a+y))/(sina)

If xsin(a+y)+sina.cos(a+y)=0. Prove that : (dy)/(dx)=(sin^2(a+y)/(sina))