Home
Class 12
MATHS
If vec a , vec b , vec ca n d vec d are...

If ` vec a , vec b , vec ca n d vec d` are the position vectors of the vertices of a cyclic quadrilateral `A B C D ,` prove that `(| vec axx vec b+ vec bxx vec d+ vec dxx vec a|)/(( vec b- vec a)dot( vec d- vec a))+(| vec bxx vec c+ vec cxx vec d+ vec dxx vec b|)/(( vec b- vec c)dot( vec d- vec c))=dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec b , vec ca n d vec d are the position vectors of the vertices of a cyclic quadrilateral A B C D , prove that (| vec axx vec b+ vec bxx vec d+ vec d xx vec a|)/(( vec b- vec a)dot( vec d- vec a))+(| vec bxx vec c+ vec cxx vec d+ vec d xx vec b|)/(( vec b- vec c)dot( vec d- vec c))=0dot

If vec a , vec b , vec ca n d vec d are the position vectors of the vertices of a cyclic quadrilateral A B C D , prove that (| vec axx vec b+ vec bxx vec d+ vec d xx vec a|)/((vec b- vec a).(vec d- vec a)) + (| vec bxx vec c+ vec cxx vec d+ vec d xx vec b|)/((vec b- vec c).( vec d- vec c))=0dot

If vec a,vec b,vec c and vec d are the position vectors of the vertices of a cyclic quadrilateral ABCD prove that (|vec a xxvec b+vec b xxvec d+vec d xxvec a|)/((vec b-vec a)*(vec d-vec a))+(|vec b xxvec c+vec c xxvec d+vec d xxvec b|)/((vec b-vec c)*(vec d-vec c))=

Prove that [ vec a , vec b , vec c+ vec d]=[ vec a , vec b , vec c]+[ vec a , vec b , vec d]

For any four vectors, prove that ( vec bxx vec c)dot( vec axx vec d)+( vec cxx vec a)dot( vec bxx vec d)+( vec axx vec b)dot( vec cxx vec d)=0.

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,