Home
Class 11
MATHS
If the foci of the ellipse (x^2)/(16)+(y...

If the foci of the ellipse `(x^2)/(16)+(y^2)/(b^2)=1` and the hyperbola `(x^2)/(144)-(y^2)/(81)=1/(25)` coincide, then find the value of ` b^2`

Text Solution

Verified by Experts

Given hyperbola is
`(x^(2))/(144)-(y^(2))/(81)=(1)/(25)`
`"or "(x^(2))/(144//25)-(y^(2))/(81//25)=1`
So, foci of hyperbola are `(pmsqrt((144)/(25)+(81)/(25)),0)-=(pm3,0)`
These are foci of ellipse `(x^(2))/(16)+(y^(2))/(b^(2))=1` also.
`therefore" "3=sqrt(16-b^(2))`
`therefore" "b^(2)=7`
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(125) coincide, the find the value of b^(2) .

If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide write the value of b^(2).

Knowledge Check

  • If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide, then the value of b^(2) is

    A
    1
    B
    5
    C
    7
    D
    9
  • If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2)=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=1/25 coincide, then the value of b^(2) is

    A
    1
    B
    5
    C
    7
    D
    9
  • If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and the hyperbola coincide then b^(2) equals

    A
    5
    B
    7
    C
    9
    D
    1
  • Similar Questions

    Explore conceptually related problems

    If the foci of the ellipse (x^(2))/(25)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide then the value of b^(2) is

    If the foci of the ellipse (x^(2))/(25)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide then the value of b^(2) is

    If the foci of the ellipse (x^(2))/(25)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide,then length of semi-minor axis is

    The foci of the ellipse (x^(2))/(4) +(y^(2))/(25) = 1 are :

    The foci of the ellipse ax^(2)+16y^(2)=16a and those of hyperbola ((x)/(12))^(2)-((y)/(9))^(2)=((1)/(5))^(2) coincide then a =