Home
Class 11
MATHS
P(vec p) and Q(vec q) are the position v...

`P(vec p) and Q(vec q)` are the position vectors of two fixed points and `R(vec r)` is the position vectorvariable point. If R moves such that `(vec r-vec p)xx(vec r -vec q)=0` then the locus of R is

Promotional Banner

Similar Questions

Explore conceptually related problems

P (vecp) and Q (vecq) are the position vectors of two fixed points and R(vecr) is the postion vector of a variable point. If R moves such that (vecr-vecp)xx (vecr-vecq)=vec0 then the locus of R is

If vec p xxvec q=vec r and vec p*vec q=c, then vec q is

If vec r_1, vec r_2, vec r_3 are the position vectors of the collinear points and scalar p a n d q exist such that vec r_3=p vec r_1+q vec r_2, then show that p+q=1.

If vec r_1, vec r_2, vec r_3 are the position vectors of the collinear points and scalar p a n d q exist such that vec r_1=p vec r_2+q vec r_3, then show that p+q=1.

If vec r_1, vec r_2, vec r_3 are the position vectors of the collinear points and scalar p a n d q exist such that vec r_3=p vec r_1+q vec r_2, then show that p+q=1.

If vec r_1, vec r_2, vec r_3 are the position vectors off thee collinear points and scalar pa n dq exist such that vec r_3=p vec r_1+q vec r_2, then show that p+q=1.