Home
Class 9
MATHS
If a + b + c = 0 , then prove that a^(3...

If a + b + c = 0 , then prove that `a^(3)+b^(3)+c^(3)=3abc`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a + b + c = 0 , show that a^(3) + b^(3) + c^(3) = 3abc The following are the steps involved in showing the above result. Arrange them in sequential order (A) a^(3) + b^(3) + 3ab (-c) = -c^(3) (B) (a + b)^(3) = (-c)^(3) (C) a + b + c = 0 rArr a + b = -c (D) a^(3) + b^(3) + 3ab (a +b) = -c^(3) (E) a^(3) + b^(3) + c^(2) = 3abc

If a = 37, b = 36, c = 38 , then prove that a^3+b^3+c^3-3abc=333

If a+b+c=0 then prove the following. a^(3) +b^(3)+c^(3)=3abc

If a+b+c=5 and ab+bc+ca=10, then prove that a^(3)+b^(3)+c^(3)-3abc=-25 .

If a+b+c=5 and ab+bc+ca=10, then prove that a^(3)+b^(3)+c^(3)-3abc=-25 .

If a+b+c=5 and ab+bc+ca=10 ,then prove that a^(3)+b^(3)+c^(3)-3abc=-25.

If a + 2b = 4c , then prove that a^3+8b^3-64c^3+24abc=0

If a prop b and b prop c , then prove that a^3 + b^3 + c^3 prop 3abc .

If a+b+c=5 and ab+bc+ca=10 , then prove that a^3+b^3+c^3-3abc=-25 .

If a+b+c=0 , then prove that a(b+c)^2+b(c+a)^2+c(a+b)^2=3abc