Home
Class 11
MATHS
Let L L ' be the latus rectum through th...

Let `L L '` be the latus rectum through the focus of the hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=1` and `A '` be the farther vertex. If ` A ' L L '` is equilateral, then the eccentricity of the hyperbola is (axes are coordinate axes). `sqrt(3)` (b) `sqrt(3)+1` `((sqrt(3)+1)/(sqrt(2)))` (d) `((sqrt(3)+1))/(sqrt(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))-(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1))

Eccentricity of the hyperbola passing through (3,0) and (3 sqrt(2),2) is

If a=(sqrt(3))/(2), then sqrt(1+a)+sqrt(1-a)=?(2-sqrt(3))(b)(2+sqrt(3))(c)((sqrt(3))/(2))(d)sqrt(3)

The eccentricity of the hyperbola (sqrt(1999))/(3)(x^(2)-y^(2))=1 , is

The tangent at a point P on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 passes through the point (0,-b) and the normal at P passes through the point (2a sqrt(2),0). Then the eccentricity of the hyperbola is 2( b) sqrt(2)(c)3(d)sqrt(3)

if x=sqrt(3)+(1)/(sqrt(3)) and y=sqrt(3)-(1)/(sqrt(3)) then x^(2)-y^(2) is

The value of sqrt(3-2sqrt(2)) is sqrt(2)-1(b)sqrt(2)+1(c)sqrt(3)-sqrt(2)(d)sqrt(3)+sqrt(2)

The eccentricity of the conjugate hyperbola of the hyperbola x^(2)-3y^(2)=1 is 2(b)2sqrt(3)(c)4 (d) (4)/(5)

If the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2)) passes through the points (3sqrt2, 2) and (6, 2sqrt(3)) , then find the value of e i.e., eccentricity of the given hyperbola.

The eccentricity of the hyperbola whose latus rectum is half of its transverse axis is (1)/(sqrt(2))b .b.sqrt((2)/(3))c*sqrt((3)/(2))d .none of these