Home
Class 12
MATHS
If y=x^(x^(x...oo)) then prove that xdy/...

If `y=x^(x^(x...oo))` then prove that `xdy/dx=(y^2)/(1-ylogx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = x^(x ^(x^(x ^(x.... oo) then prove that x dy/dx = y^2/(1- y logx )

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y = (x^(x^(x)….......to oo)) , prove that xdy/dx=y^2/(1-ylogx) .

y=x^(x^(x^------infty) then prove that dy/dx=(y^2)/(x(1-ylogx))

If y = x^(x^(x….. To infty) , prove that dy/dx = y^2/(x(1-ylogx)) .

"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)])

"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)]).