Home
Class 11
MATHS
If alpha,beta,gamma are the real roots ...

If `alpha,beta,gamma` are the real roots of the equation, `x^3-3p x^2+3q x-1=0` , the cetroid of the triangle whose vertices are `(alpha,1/alpha),(beta,1/beta),(gamma,1/gamma)` is: a.`(p ,p)` b. `(p ,0)` c. `(p ,q)` d. `(q ,0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the real roots of the equation,x^(3)-3px^(2)+3qx-1=0, the cetroid of the triangle whose vertices are (alpha,(1)/(alpha)),(beta,(1)/(beta)),(gamma,(1)/(gamma)) is: a.(p,p) b.(p,0) c.(p,q) d.(q,0)

If alpha,beta,gamma are the real roots of the equation,x^(3)-3px^(2)+3qx-1=0, the centroid of the triangle whose vertices are (alpha,(1)/(alpha)),(beta,(1)/(beta)),(gamma,(1)/(gamma))quad is(p,p)(b)(p,0)(p,q)(d)(q,0)

If alpha,beta,gamma are the real roots of the equation x^(3)-3ax^(2)+3bx-1=0 then the centroid of the triangle with vertices (alpha,(1)/(alpha))(beta,(1)/(beta)) and (gamma,1/ gamma) is at the point

If alpha,beta,gamma are the roots of the equation x^3-p x+q=0, then find the cubic equation whose roots are alpha/(1+alpha),beta/(1+beta),gamma/(1+gamma) .

If alpha,beta,gamma are the roots of the equation x^3-p x+q=0, then find the cubic equation whose roots are alpha/(1+alpha),beta/(1+beta),gamma/(1+gamma) .

If alpha,beta,gamma are the roots of the equation x^3-p x+q=0, then find the cubic equation whose roots are alpha/(1+alpha),beta/(1+beta),gamma/(1+gamma) .

alpha , beta , gamma are the roots of the equation x^(3)-3x^(2)+6x+1=0 . Then the centroid of the triangle whose vertices are (alpha beta,1/(alpha beta)) , (beta gamma, 1/(beta gamma)) , (gamma alpha,1/(gamma alpha)) is

If alpha,beta,gamma are the roots of the equation x^(3)-px+q=0, ten find the cubic equation whose roots are alpha/(1+alpha),beta/(1+beta),gamma/(1+gamma)

if alpha, beta, gamma are the roots of x^(3) + x^(2)+x + 9=0 , then find the equation whose roots are (alpha +1)/(alpha -1) , (beta+1)/(beta -1), (gamma+1)/(gamma -1)

if alpha, beta, gamma are the roots of x^(3) + x^(2)+x + 9=0 , then find the equation whose roots are (alpha +1)/(alpha -1) , (beta+1)/(beta -1), (gamma+1)/(gamma -1)