Home
Class 11
MATHS
A hyperbola having the transverse axis o...

A hyperbola having the transverse axis of length `2sintheta` is confocal with the ellipse `3x^2+4y^2=12` . Then its equation is `x^2cos e c^2theta-y^2sec^2theta=1` `x^2sec^2theta-y^2cos e c^2theta=1` `x^2sin^2theta-y^2cos^2theta=1` `x^2cos^2theta-y^2sin^2theta=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

A hyperbola,having the transverse axis of length 2sin theta, is confocal with the ellipse 3x^(2)+4y^(2)=12. Then its equation is

A hyperbola, having the transverse axis of length 2 sin theta , is confocal with the ellipse 3x^(2) + 4y^(2) = 12 . Then its equation is

sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-cos^(2)theta)=1

If x=2cos theta -cos 2theta ,y=2sin theta -sin 2theta ,then (dy)/(dx) =

If 2y cos theta= xsin theta and 2x sec theta-y cosec theta=3 then x^2/4+y^2=

If x= sin^(2)theta* cos theta and y=sin theta cos^(2)theta,"then" :

x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta

x=a sin2 theta(1+cos2 theta), y=b cos2 theta(1-cos2 theta) then (dy)/(dx)=

If cos^(-1)x+cos^(-1)y=theta show that x^(2)-2xy cos theta+y^(2)=sin^(2)theta