Home
Class 12
MATHS
int(0)^(pi)[cotx]dx, where [.] denotes t...

`int_(0)^(pi)[cotx]dx,` where [.] denotes the greatest integer function, is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi) [cot x] dx , where [*] denotes the greatest integer function, is equal to

int_(0)^(pi)[cos x] dx, [ ] denotes the greatest integer function , is equal to

int_(0)^(pi)[cos x] dx, [ ] denotes the greatest integer function , is equal to

int_(0)^(pi)[cos x] dx, [ ] denotes the greatest integer function , is equal to

int_0^(pi) [cot x] dx , when [cdot] denotes the greatest integer function, is equal to :

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

int_(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx , where [.] denotes the greatest integer function, is equal to: