Home
Class 11
MATHS
(logx2)(log(2x)2)=log(4x)2 n(logx 2)(log...

`(log_x2)(log_(2x)2)=log_(4x)2` n(logx 2)(log2x 2) = log4x2 is

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve log_(x)2log_(2x)2=log_(4x)2

log_(4)(log_(2)x)+log_(2)(log_(4)x)=2

log_(4)(log_(2)x)+log_(2)(log_(4)x)=2

Solve (log)_x2(log)_(2x)2=(log)_(4x)2.

Solve (log)_x2(log)_(2x)2=(log)_(4x)2.

Solve (log)_x2(log)_(2x)2=(log)_(4x)2.

Solve (log)_x2(log)_(2x)2=(log)_(4x)2.

Solve for x: a) log_(x)2. log_(2x)2 = log_(4x)2 b) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3.

Solve for x: a) (log_(10)(x-3))/(log_(10)(x^(2)-21)) = 1/2 b) log(log x)+log(logx^(3)-2)= 0, where base of log is 10. c) log_(x)2. log_(2x)2 = log_(4x)2 d) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3. e) If 9^(1+logx)-3^(1+logx)-210=0 , where base of log is 3.

(log_(4)x-2)*log_(4)x=(3)/(2)(log_(4)x-1)