Home
Class 9
MATHS
If (x+y)/(p^(3)-q^(3)) = (y+z)/(q^(3)-r...

If ` (x+y)/(p^(3)-q^(3)) = (y+z)/(q^(3)-r^(3)) = (z+x)/(r^(3)-p^(3))`, then prove that x + y + z = 0.

Text Solution

Verified by Experts

Let ` (x+y)/(p^(3)-q^(3)) = (y+z)/(q^(3)-r^(3)) = (z+x)/(r^(3)-p^(3)) = k`
` rArr x + y = k(p^(3)-q^(3)), y + z = k (q^(3)-r^(3)), z + x = k(r^(3)-p^(3))`
` rArr x + y + y + z + z +x = k (p^(3)-q^(3)+q^(3)-r^(3)+r^(3)-p^(3))`
` rArr 2 (x+y+z) = k (0)`
`:. x + y + x = 0`.
Promotional Banner

Topper's Solved these Questions

  • RATIO, PROPORTION AND VARIATION

    PEARSON IIT JEE FOUNDATION|Exercise Very Short Type Questions|30 Videos
  • RATIO, PROPORTION AND VARIATION

    PEARSON IIT JEE FOUNDATION|Exercise Short Answer Type Questions|15 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|23 Videos
  • SALES TAX AND COST OF LIVING INDEX

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|14 Videos

Similar Questions

Explore conceptually related problems

x^(3)(y-z)^(3)+y^(3)(z-x)^(3)+z^(3)(x-y)^(3)

x^(3)(y-z)^(3)+y^(3)(z-x)^(3)+z^(3)+z^(3)(x-y)^(3)

Value of (x-y)^(3) +(y-z)^(3) +(z-x)^(3) is

Find (x+y+z)^(3)-(x+y-z)^(3)-(y+z-x)^(3) -(z + x-y)^(3)

If (a-x)/(px)=(a-y)/(qy)=(a-z)/(r) andp,q, andr are in A.P.,then prove that x,y,z are in H.P.

Factorize :(x-y)^(3)+(y-z)^(3)+(z-x)^(3)

(x + y) ^ (3) + (y + z) ^ (3) + (z + x) ^ (3) -3 (x + y) (y + z) (z + x)

If p.q,r are distinct,then (q-r)x+(r-p)y+(p-q)=0 and (q^(3)-r^(3))x+(r^(3)-p^(3))y+(p^(3)-q^(3))=0 represents the same line if