Home
Class 10
MATHS
Show that (1)/(log(a)abc)+(1)/(log(b)abc...

Show that `(1)/(log_(a)abc)+(1)/(log_(b)abc) + (1)/(log_(c) abc) = 1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (1)/(log_(a)abc)+(1)/(log_(b)abc)+(1)/(log_(c)abc)

Show that (1)/(log_(a)bc+1)+(1)/(log_(b)ca+1)+(1)/(log_(c )ab+1)=1

(1)/(log_(ab)(abc))+(1)/(log_(bc)(abc))+(1)/(log_(ca)(abc)) is

If a, b, c are positive real numbers, then (1)/("log"_(ab)abc) + (1)/("log"_(bc)abc) + (1)/("log"_(ca)abc) =

If a, b, c are positive real numbers, then (1)/("log"_(ab)abc) + (1)/("log"_(bc)abc) + (1)/("log"_(ca)abc) =

Prove that : (1)/( log _(a) ^(abc) )+(1)/(log_(b)^(abc) ) + (1)/( log _c^(abc)) =1

(1)/(log_(bc)abc)+(1)/(log_(ac)abc)+(1)/(log_(ab)abc) is equal to

Evaluate : (1)/(log_(a)bc + 1) + (1)/(log_(b)ca + 1) + (1)/(log_(c) ab + 1)