Home
Class 12
MATHS
If tan^(-1)(x+2)+tan^(-1)(x-2)-tan^(-1)(...

If `tan^(-1)(x+2)+tan^(-1)(x-2)-tan^(-1)((1)/(2))=0`, them one of the values of x is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)(x+2)+tan^(-1)(x-2) - tan^(-1)((1)/(2)) = 0 , then one of the values of x is equal to

If 3tan^(-1)((1)/(2+sqrt3))-tan^(-1).(1)/(3)=tan^(-1).(1)/(x) , then the value of x is equal to

If 3tan^(-1)((1)/(2+sqrt3))-tan^(-1).(1)/(3)=tan^(-1).(1)/(x) , then the value of x is equal to

If (d)/(dx)(tan^(-1)x)^(2)=k tan^(-1)x*(1)/(1+x^(2)) , then the value of k is -

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

Solve : tan^(-1)(x+2)+tan^(-1)(x-2)=tan^(-1)""(4)/(19),xgt0

Let |{:(tan^(-1)x, tan^(-1)2x, tan^(-1)3x), (tan^(-1)3x, tan^(-1)x, tan^(-1)2x), (tan^(-1)2x, tan^(-1)3x, tan^(-1)x):}|=0 , then the number of values of x satisfying the equation is

6. If tan^(−1)(1−x),tan^(−1)(x) and tan^(−1)(1+x) are in A.P., then the value of x^3+x^2 is equal to