Home
Class 9
MATHS
If 3s = a + b + c , then find (s-a)^(3)+...

If 3s = a + b + c , then find `(s-a)^(3)+(s-b)^(3)+(s-c)^(3)+3(s-a)(s-b)(s-c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2s = a + b + c , Then prove that (s-a)^3+(s-b)^3+(s-c)^3-3(s-a)(s-b)(s-c) = 1/2(a^3+b^3+c^3-3abc)

If 2s=a+b+c, prove that (s-a)^(3)+(s-b)^(3)+(s-c)^(3)-3(s-a)(s-b)(s-c)=(1)/(2)(a^(3)+b^(3)+c^(3)-3abc)

If 2s = a + b + c , then prove that (s-a)^3+(s-b)^3+(s-c)^3+3 abc = s^3

If 3s = 2(a + b + c) , then prove that (s-b-c)^3 + (s-c-a)^3 +(s-a-b)^3+3(b+c-s)(c+a-s)(a+b-s)=0

If 2s = a + b + c , then prove that s^3 + (s-2a)^3 +(s-2b)^3 + (s-2c)^3 = 24 (s-a)(s-b)(s-c)

If c^2 = a^2 + b^2, 2s = a + b + c , then 4s(s-a) (s - b)(s-c)

If 2s = a + b + c , then the value of (s - a)^2 + (s - b)^2 + (s - c)^2 + s^2 - a^2 - b^2 - c^2 will be :