Home
Class 12
MATHS
int0^pi(x dx)/(1+cosalpha*sinx)=(pialpha...

`int_0^pi(x dx)/(1+cosalpha*sinx)=(pialpha)/(sinalpha), 0 < alpha < pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int_0^pix/(1-cosalphasinx)dx=(pi(pi-alpha))/(sinalpha)

Prove that int_(0)^(pi)(x)/(1-cosalphasinx)dx=(pi(pi-alpha))/(sinalpha)

The value of the integral int_0^pi (xdx)/(1+cosalphasinx),0ltaltpi is (A) (pia)/sinalpha (B) (pia)/(1+sinalpha) (C) (pia)/cosalpha (D) (pia)/(1+cosalpha)

Evaluate: int_0^pi(dx)/(1+sinx)

Evaluate: int_0^pi(dx)/(1+sinx)

solve int_0^pi (x sinx)/(1+cosx) dx=

int_(0)^((pi)/(4))(dx)/(1+sinx)

Find the inverse the matrix (if it exists)given in [(1, 0, 0),( 0,cosalpha ,sinalpha),(0, sinalpha, -cosalpha)]

Inverse of the matrix {:[(cosalpha,-sinalpha,0),(sinalpha,cosalpha ,0),(0,0,1)]:} is

int_(0)^(pi)(dx)/((1+sinx))=?