Home
Class 12
MATHS
[" An integrating taction of the differe...

[" An integrating taction of the differential cyuution "(1+x^(2))(dy)/(dx)+],[qquad [" ) "sqrt(1-x^(2))," 2) "(x)/(sqrt(1-x^(2)))," 3) "(x^(2))/(sqrt(1-x^(2)))]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Integrating factor of the differential equation (1-x^(2)) (dy)/(dx) + xy = (x^(4)( sqrt(1 -x^(2)))^(3))/((1 + x^(5)) is

The integrating factor of the linear differential equation (1-x^(2))^(2)(dy)/(dx) + sqrt(1-x^(2))y=x+sqrt(1-x^(2)) is -

An integrating factor of the differential equation (dy)/(dx)+(2xy)/(1-x^(2))=(x)/(sqrt(1-x^(2))) is

(d)/(dx) {Tan ^(-1)"" (sqrt(1+ x ^(2))+ sqrt(1- x ^(2)))/( sqrt(1+ x ^(2))- sqrt(1- x ^(2)))}=

d/(dx)(sin^(-1)x+cos^(-1)x) is equal to : (A) (1)/(sqrt(1-x^(2))), (B) (2)/(sqrt(1-x^(2))), (C) 0 (D) sqrt(1-x^(2))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

d/dx{Tan ^(-1) (( sqrt ( 1 + x ^(2)) - sqrt (1 - x ^(2)))/( sqrt (1 + x ^(2)) + sqrt (1 - x ^(2))))} =